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Abstract

The local-plate, distortional and global vibration behaviour of thin-walled steel channel members subjected to

compression and/or non-uniform bending is studied. This investigation is carried out by means of a very recently

developed Generalised Beam Theory (GBT) formulation, which takes into account the geometrically nonlinear stiffness

reduction caused by the presence of (i) longitudinal stress gradients and (ii) the ensuing shear stresses. Taking advantage of

the GBT modal features, one analyses the effect of the applied load and bending moment gradient on the small amplitude

vibration behaviour of the loaded members (beam-columns). For validation purposes, some GBT-based results are

compared with values yielded by either shell finite element analyses, performed in commercial codes, or experimental

results available in the literature.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In order to properly assess the dynamic behaviour of thin-walled steel members, one must acquire in-depth
knowledge concerning both its local (local-plate or distortional) and global vibration behaviours, i.e., identify
all the relevant vibration modes and evaluate the associated natural frequencies. Moreover, since in several
applications steel members are subjected to simultaneous static and dynamic actions (e.g., the effects of
heavy machinery or seismic activity), designers are faced with the need to assess their dynamic response—in
order to perform this task, they must be equipped with efficient analytical and/or numerical tools to
analyse the vibration behaviour of members acted upon by more or less significant internal forces and/or
moments.

Up to now, a fairly large amount of research work has been devoted to the study of the influence of local

deformations on the vibration behaviour of load-free members (e.g., Refs. [1–4]). However, the same cannot be
said about loaded members, even though the global vibration behaviour of columns and beams has been the
subject of several studies (e.g., Refs. [5–8])—concerning beams, it is worth mentioning (i) the closed-form
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Nomenclature

A cross-section area
Bik, Cik, Dik GBT basic (linear) stiffness tensorial

components
b, h wall width and thickness
de finite element displacement vector
d global displacement vector
E, G, v Young’s modulus, shear modulus and

Poisson’s ratio
I3 minor axis moment of inertia
Ke, Ge, Me finite element stiffness, geometric and

inertia matrices
K, G, M global stiffness, geometric and inertia

matrices
L member length
M, N applied bending moment and axial com-

pression
n number of cross-section walls
nd number of GBT deformation modes

considered
ns number of longitudinal half-waves
Pk GBT modal participation factor
Qik, Rik GBT out-of-plane and in-plane inertia

tensorial components
S cross-section overall width
Sj(s) first moment of area

Xs
jik, X t

jik GBT geometric stiffness tensorial
components related to longitudinal and
shear stresses

uk(s), vk(s), wk(s) modal warping, transverse
membrane and flexural displacement
functions

u, v, w displacement field components
U, T member strain and kinetic energies
Wj

0 GBT generalised normal stress resultant
x, s, z wall (plate) coordinate axes
X, Y, Z member global coordinate axes
Y(t) time-dependent amplitude function
a applied load level (fraction of critical

value)
fk(x), zk(x,t) longitudinal modal amplitude func-

tions
l load parameter
Ps, Pt potentials of the applied longitudinal and

shear stresses
r member mass density
sij, eij, gij stress, strain and membrane shear

strain components
o angular frequency
oa angular frequency of member loaded at

level a
ci(x ¼ x/Le) Hermite cubic polynomials
(.),X derivative with respect to X

(F), (M) flexural and membrane components
(L), (NL)linear and nonlinear components
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analytical solutions for the flexural–torsional vibration under uniform or variable bending moments,
developed by Joshi and Suryanarayan [6,7], and (ii) the analytical solution of the flexural vibration of long
simply supported beams subjected to their own weight, reported by Shih et al. [8]. Indeed, few papers deal with
the local vibration of loaded thin-walled members and practically all of them concern columns—e.g., the
investigations undertaken by Ogha et al. [9] and Okamura and Fukasawa [10].

Until recently, the local and/or global vibration analysis of thin-walled members could only be performed
by resorting to either shell finite element analysis (SFEA) [11] or analyses based on the semi-analytical finite
strip method (FSM) [12]. Generalised Beam Theory (GBT), originally proposed by Schardt [13] and
extensively developed at the Technical University of Lisbon in the last few years (e.g., Refs. [14–16]),
incorporates both local and global cross-section deformations. Concerning vibration analysis, the first GBT
formulation was developed by Schardt and Heinz [17], who employed it to analyse the local and global

vibration behaviour of load-free isotropic thin-walled members. Later, Silvestre [18] and Silvestre and
Camotim [19–21] extended this formulation to cover (i) load-free FRP composite orthotropic members,
(ii) cold-formed steel-compressed members and (iii) FRP composite orthotropic members under compression
or major axis bending—moreover, a study dealing with the influence of pure bending in steel I-section beams
was reported in Ref. [14]. However, all these works deal exclusively with members acted upon by uniform axial
force and bending moment diagrams.

The objective of this paper is to present the development and illustrate the application of a novel GBT
formulation to analyse the vibration behaviour of thin-walled members acted upon by loadings that may
include combinations of axial force and uniform or non-uniform bending (as well as the ensuing shear
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stresses).1 The formulation involves the numerical implementation of a GBT-based beam finite element (the
main steps are presented here) and is employed to study the local and global vibration behaviour of (i) simply
supported lipped channel beams acted upon by uniformly distributed transverse loads and (ii) plain channel
cantilevers subjected to axial and transverse tip point loads, both cases involving non-uniform bending and
shear—the investigation focuses mainly on the combined effect of the applied load level and bending moment
gradients.

One takes advantage of the unique modal properties of GBT, which (i) make it possible to perform accurate
analyses involving only a few degrees of freedom and (ii) provide vibration mode representations expressed as
linear combinations of deformation modes with clear structural meanings. Finally, for validation purposes,
the GBT-based results are compared with the values obtained experimentally by other authors and/or yielded
by FEA carried out in the commercial codes ANSYS or ABAQUS.

2. GBT formulation

Since the cross-section displacement field is expressed as a linear combination of structurally meaningful
deformation modes, the GBT analyses (i) lead to equilibrium equations written in a rather convenient form
and (ii) enable the performance of ‘‘doubly modal’’ analyses that provide an in-depth and fresh insight on the
mechanics of the vibration behaviour of prismatic thin-walled members. In order to derive the GBT
equilibrium equations, consider the prismatic thin-walled member depicted in Fig. 1(a), which has a
supposedly arbitrary (n-walled) open cross-section—also shown is the member global coordinate system
X–Y–Z (longitudinal, major and minor axis). Moreover, local coordinate systems x–s–z are adopted in each
wall, as shown in Fig. 1(b), where x (parallel to X) and s define the wall mid-plane, and z is measured along the
thickness h—when expressed in this coordinate system, the mid-line displacement field components are
designated as u, v and w. According to the classical thin-walled beam theory [22], the displacement
components are expressed as

uðx; s; tÞ ¼ ukðsÞzk;xðx; tÞ; vðx; s; tÞ ¼ vkðsÞzkðx; tÞ; wðx; s; tÞ ¼ wkðsÞzkðx; tÞ (1)

where (i) ( � ),x ¼ q( � )/qx, (ii) uk(s), vk(s) and wk(s) are the cross-section deformation mode components and
(iii) zk(x, t) are the amplitude functions describing their variation both along the longitudinal direction and
with time t. In vibration analysis of thin-walled members, one commonly assumes null mid-surface membrane
shear strains (gM:L

xs ¼ 0—‘‘Vlasov’s hypothesis’’) and transverse extensions (�M
ss ¼ 0), as well as the classical

Kirchhoff–Love hypotheses. Then, the relevant non-null strain components are

�M :L
xx ¼ u;x; �M :NL

xx ¼ ðv2;x þ w2
;xÞ=2; �Fxx ¼ �zw;xx (2)

gF
xs ¼ �2zw;xs; gM:NL

xs ¼ w;sw;x; �F
ss ¼ �zw;ss (3)

where superscripts (M) and (F) identify membrane and flexural components, and the former include linear (L)
and nonlinear (NL) terms. The nonlinear terms in Eqs. (2)–(3) are essential to obtain the geometric stiffness
matrices related to the applied loading—in particular, the nonlinear membrane shear strain plays a crucial role
in the presence of non-uniform applied bending moments. After incorporating Eq. (1) into Eqs. (2) and (3),
one obtains the variations of the above strain components, given by

d�M :L
xx ¼ ukdzk;xx; d�M:NL

xx ¼ ðvivk þ wiwkÞzi;xdzk;x; d�F
xx ¼ �zwkdzk;xx (4)

dgF
xs ¼ �2zwk;sdzk;x; dgM :NL

xs ¼ wi;swkðzidzk;x þ zk;xdziÞ; d�F
ss ¼ �zwk;ssdzk (5)
1At this stage, it should be made clear that this work deals exclusively with small amplitude (linear) vibrations and that all the

geometrically nonlinear effects stem from the presence of applied loads causing compression and (non-uniform) bending. Indeed, in the

problems handled by the GBT formulation developed in this paper, the variation of the natural frequencies and vibration mode shapes

stems solely from the applied loads. Phenomena similar to the ‘‘hardening’’ and ‘‘softening’’ ones might occur in thin-walled members

vibrating under applied loads with varying magnitudes—a load increase (decrease) causes a stiffness drop (raise) that ‘‘softens’’

(‘‘hardens’’) the member (small amplitude) vibration behaviour.



ARTICLE IN PRESS

x

x s

s

z
x

z

z

s
dx

s(v)

x(u)
z(w)

ds

X

Y

Z
h

Fig. 1. (a) Arbitrary prismatic open-section thin-walled member and global coordinate system and (b) infinitesimal wall element with its

local coordinate system and displacement components.
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2.1. Hamilton’s principle

In order to perform vibration analyses of thin-walled members acted by static loads, the application of
Hamilton’s principle, leading to the member dynamic equilibrium equations, readsZ t2

t1

dðU þP� TÞdt ¼ 0 (6)

where U and T are the member total strain and kinetic energies and P is the potential of the applied loads.
Their first variations are given by (L, S and h are the member length, cross-section mid-line overall width and
wall thickness)

dU ¼

Z
L

Z
S

Z
h

sM
xxd�

M
xx þ sF

xxd�
F
xx þ sF

ssd�
F
ss þ tF

xsdg
F
xs

� �
dzdsdx (7)

dT ¼

Z
L

Z
S

Z
h

ruP
;tduP

;t þ rvP
;tdvP

;t þ rwP
;tdwP

;t

� �
dzdsdx (8)

dP ¼ dPs þ dPt ¼

Z
L

Z
S

Z
h

s0xxd�
M:NL
xx þ t0xsg

M :NL
xs

� �
dzdsdx (9)

where r is the material mass density, s0xx and t0xs are the applied longitudinal normal and shear stress fields and
uP, vP and wP are the displacement components of an arbitrary wall point P, related to their mid-line (z ¼ 0)
counterparts u, v and w by means of

uP ¼ u� zw;x; vP ¼ v� zw;s; wP ¼ w (10)

The stress components appearing in Eq. (7), each of them multiplying the corresponding strain component,
are obtained from the plane stress constitutive relations (note that, in order to comply with the classical beam
theories, one assumes that no Poisson’s effects are included in the membrane longitudinal stresses sM

xx):

sF
xx

sF
ss

tF
xs

8><
>:

9>=
>; ¼

E

1� v2

1 n 0

n 1 0

0 0 ð1þ nÞ=2

2
64

3
75

�F
xx

�F
ss

gF
xs

8><
>:

9>=
>; sM:L

xx ¼ E�M :L
xx (11)

where E and n are the material Young’s modulus and Poisson’s ratio. After incorporating the appropriate
terms of Eqs. (4)–(5) and relation (11) into (7), one obtains

dU ¼

Z
L

ðCikzk;xxdzi;xx þDikzk;xdzi;x þ BikzkdziÞdx (12)

where Cik, Dik and Bik are second-order tensors describing the member linear stiffness behaviour. In members
with uniform wall thickness (h(s)�h) and material stiffness (E(s)�E) (the only ones dealt with in this work),
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their components read

Cik ¼ E

Z
S

huiuk þ
h3

12ð1� n2Þ
wiwk

� �
ds Bik ¼

Eh3

12ð1� n2Þ

Z
S

wi;sswk;ss ds

Dik ¼
Gh3

3

Z
S

wi;swk;s �
n

2ð1� nÞ
ðwiwk;ss þ wkwi;ssÞ

� �
ds (13)

where G is the material shear modulus, which can be expressed as a function of E and n. It is worth noting that
matrices Cik, Dik and Bik concern generalised warping (primary and secondary), generalised torsion and wall

transverse bending. Incorporating Eq. (10) into (8), the first variation of the member kinetic energy reads

dT ¼

Z
L

ðQikzk;xtdzi;xt þ Rikzk;tdzi;tÞdx (14)

where, for a uniform mass density (r(s)�r), the second-order tensors Qik and Rik are given by

Qik ¼ rh

Z
S

uiuk dsþ
rh3

12

Z
S

wiwk ds

Rik ¼ rh

Z
S

ðvivk þ wiwkÞdsþ
rh3

12

Z
S

wi;swk;s ds (15)

They concern the influence of the inertia forces associated with out-of-plane and in-plane cross-section
displacements—in both cases, the first and second terms correspond to translational and rotational inertia
forces.

As for the geometrically nonlinear effect associated with the applied loads, let us consider a member
subjected to a longitudinal stress field given by

s0xx ¼ Eujz
0
j;xx (16)

where ujz
0
j;xx (j ¼ 1,y, 4) are the mid-line axial displacements—note that the flexural components of the

applied longitudinal stresses are neglected. After incorporating Eqs. (4b) and (16) into (9a), one obtains the
expression for the virtual work done by s0xx,

dPs ¼

Z
L

W 0
j X s

jikzk;x dzi;x dx

W 0
j ¼ Cjjz

0
j;xx (17)

where (i) W 0
j is a vector whose components are normal stress resultants due to the applied loads, namely W 0

1

(axial force), W 0
2 (major axis bending moment), W 0

3 (minor axis bending moment) and W 0
4 (bimoment), each

associated with a displacement field ujz
0
j;xx and (ii) Xs

jik are the associated geometric stiffness matrices, given by

Xs
jik ¼

Eh

Cjj

Z
S

ujðvivk þ wiwkÞds (18)

Next, one addresses the virtual work done by the applied shear stresses t0xs, due to the non-uniform applied
bending moments, which deserves special attention. Since Vlasov’s null linear shear strain hypothesis
(gM:L

xs ¼ 0) is adopted, t0xs must be evaluated from longitudinal stress equilibrium (instead of a constitutive
relation—a well-known inconsistency of the thin-walled beam theories): the longitudinal stress gradients must
be balanced by means of shear stress distributions.2

2.1.1. Applied (pre-buckling) shear stress distribution

To illustrate the determination of the shear stress distribution, consider, without any loss of generality, the
plain channel beam shown in Fig. 2(a), together with its global coordinate system X– Y– Z. As for Fig. 2(b), it
2In this work, only the shear stresses due to bending moment longitudinal gradients are dealt with. A similar approach could be adopted

to also account for shear stresses caused by longitudinally varying bimoments (required to balance the warping normal stresses caused by

non-uniform torsion).
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Fig. 2. (a) Beam and global coordinates and (b) wall element with the acting stress resultants.
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depicts an infinitesimal wall element located at the beam upper flange end (see Fig. 2(a)), its local coordinate
system x– s–z and the resultants of the (positive) acting longitudinal normal and shear stresses. By imposing
equilibrium along the x�X-axis, which involves the acting longitudinal normal stresses and shear stresses (see
Fig. 2(b)), and taking into account Eqs. (16) and (17b), one obtains

dt0xs ¼ �
EW 0

j;x

Cjj

uj ds (19)

where W 0
j;x is the acting shear force (recall that W 0

j is a bending moment—j ¼ 2 or 3). The value of the shear
stress acting at a given point, t0xsðx; sÞ, is evaluated by integrating Eq. (19) along the mid-line width comprised
between a chosen section end and that point [23]—one then obtains

t0xsðx; sÞ ¼ �
EW 0

j;xSjðsÞ

Cjjh
(20)

where Sj(s) is the first moment of that same area, with respect to Y (j ¼ 2) or Z (j ¼ 3)—see Fig. 2(a). By
incorporating Eqs. (5b) and (20) into (9b), one obtains

dPt ¼ �

Z
L

W 0
j;xX t

jikðzidzk;x þ zk;xdziÞdx (21)

where the third-order tensor X t
jik stands for the geometric stiffness related to the shear stresses caused by the

applied bending moment gradients—they are null for j 6¼2, 3 and otherwise equal to

X t
jik ¼

E

Cjj

Z
S

SjðsÞwi;swk ds (22)

Introducing Eqs. (12), (14), (17) and (21) into (6), carrying out the integrations by parts and noting that dzi

is arbitrary, one obtains the system of dynamic equilibrium equations

Cikzk;xxxx �Dikzk;xx þ Bikzk �Qikzk;xxtt þ Rikzk;tt � X jik W 0
j zk;x

� �
;x
þ X t

jki W 0
j;xzk

� �
;x
�W 0

j;xX t
jikzk;x ¼ 0 (23)

One solution of the above system can be found by assuming that the free vibration motions display
synchronous configurations, i.e., by considering the separation of variables

zkðx; tÞ ¼ fkðxÞY ðtÞ (24)

where fk(x) is a longitudinal shape function and Y(t) is a time-dependent function satisfying the free vibration
harmonic equation of motion Y,tt+o

2Y ¼ 0, where o is the angular frequency of vibration—thus, one may
write

zk;tt ¼ �o
2zk (25)

The insertion of Eq. (25) into (23) leads to the final system of equilibrium equations

Cikfk;xxxx �Dikfk;xx þ Bikfk � o2ðRikfk �Qikfk;xxÞ � X jik W 0
j fk;x

� �
;x
þ X t

jki W 0
j;xfk

� �
;x
�W 0

j;xX t
jikfk;x ¼ 0

(26)

which depends exclusively on derivatives with respect to x. The performance of a GBT vibration analysis
involves two main tasks, namely (i) a cross-section analysis, to identify the GBT deformation modes and
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determine the corresponding modal mechanical and mass properties and (ii) a member analysis, which consists
of solving the ensuing vibration eigenvalue problem to obtain the member natural frequencies and associated
vibration mode shapes. Next, the main aspects and operations related to the execution of each of these tasks
are presented and illustrated in the context of cold-formed members (with arbitrary open cross-sections).
2.2. Cross-section analysis

The performance of a GBT cross-section analysis involves a sequential procedure comprising the following
major steps [14,24]:
(i)
 Cross-section discretisation into n+1 natural nodes (ends of the n walls forming the cross-section) and m

intermediate nodes (located within the walls)—note that, in branched sections (with nodes shared by more
than two walls), the natural nodes are still divided into dependent and independent.
(ii)
 Determination of the initial shape functions ui(s), vi(s) and wi(s), by imposing (ii1) unit warping
displacements (u ¼ 1) at each independent natural node and (ii2) unit flexural displacements (w ¼ 1) at
each intermediate node—the cross-section end nodes are treated as both natural (independent or
dependent) and intermediate. Note that evaluating the flexural functions wi(s) involves solving a statically
indeterminate folded-plate problem (by means of the displacement method, in this work).
(iii)
 Calculation of the cross-section linear stiffness (13), mass (15) and geometric stiffness (18) and (22)
matrices, on the basis of the initial shape functions and applied loading. One obtains fully populated
matrices with components that exhibit no obvious structural meaning.
(iv)
 In order to uncouple the member equilibrium equation system as much as possible and, at the same time,
have matrix components with clear structural meanings, one simultaneously diagonalises the linear
stiffness matrices Cik and Bik given in Eq. (13). This leads to the cross-section deformation modes (the final

shape functions uk(s), vk(s) and wk(s)) and to the evaluation of the associated cross-section modal
mechanical, mass and geometrical properties—several of the new matrix components have a very clear/
illuminating structural meaning [14]. This process is the GBT ‘‘trademark’’ and makes it possible to
express the equilibrium equations in modal form, thus leading to a fair amount of interpretation and
numerical implementation advantages.
To illustrate the above concepts, Figs. 3(a) and (b) show the dimensions, elastic constants and one possible
GBT discretisation of (i) a plain and (ii) a lipped channel section. On the basis of these discretisations, the
GBT cross-section analysis leads to nd ¼ 11 and nd ¼ 18 deformation modes—the in-plane shapes of the 10
most relevant ones are given in Figs. 4(a) and (b). In either case, modes 1–4 are global: axial extension, major
and minor axis bending and torsion. Then, while the plain channel section only has local-plate modes (X5), its
lipped counterpart has both distortional (5–6) and local-plate (X7) modes.
E=210GPaE=190GPa �=0.3 �=7.93g cm-3 �=0.3 �=7.85g cm-3

Intermediate node End nodeNatural node

(cm)(cm)

0.045

2.7

1.3

10.0

0.1

4.0

2.0

Fig. 3. Geometry and one possible GBT discretisation of (a) plain and (b) lipped channel sections.
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Fig. 4. In-plane shapes of the 10 most relevant deformation modes: (a) plain and (b) lipped channel.
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2.3. Member analysis

The vibration eigenfunction problem to be solved is defined by Eq. (26) and the appropriate member end
support conditions—indices i and k (1,y, nd) now refer to the cross-section deformation modes. In the
particular case of simply supported members (end sections locally/globally pinned and free to warp) either
unloaded or acted by uniform internal forces and moments (i.e., not under stress gradients—
W 0

j;x ¼W 0
j;xx ¼ 0), the exact solutions (eigenfunctions) of this problem are of the form

fkðxÞ ¼ Ak sin nsp
x

L

� �
(27)

where Ak is the amplitude associated with deformation mode k and ns is the vibration mode number of the
solution. In members with arbitrary support and loading conditions, the problem is best solved
(approximately) by means of a GBT-based beam finite element formulation—such a formulation was
recently developed and implemented by the authors [23] in the context of stability analysis and the finite
element is able to handle the influence of both (pre-buckling) longitudinal normal stress gradients and shear
stresses. For the vibration analysis of loaded members, a similar finite element formulation involves the main
steps and procedures that are briefly described next:
(i)
 Consider the variational form of the equilibrium condition (weak counterpart of Eq. (26)),
given by

dV ¼

Z
Le

ðCikfk;xx dfi;xx þDikfk;x dfi;x þ Bikfk dfi � o2ðRikfk �Qikfk;xxÞ þW 0
j X jikfk;x dfi;x

�W 0
j;xX t

jikðfi dfk;x þ fk;x dfiÞÞdx ¼ 0 (28)

where the integrations are now carried out over the finite element length Le, subscripts i, k identify the
various deformation modes and subscript j identifies the applied stress resultant.
(ii)
 Approximate the modal amplitude functions fk(x) by means of linear combinations of standard
Hermite cubic polynomials,

fkðxÞ ¼ de
k:1c1ðxÞ þ de

k:2c2ðxÞ þ de
k:3c3ðxÞ þ de

k:4c4ðxÞ (29)

where de
k:1 ¼ fk;xð0Þ, de

k:2 ¼ fkð0Þ, de
k:3 ¼ fk;xðLeÞ, de

k:4 ¼ fkðLeÞ, x ¼ x/Le and

C1 ¼ Leðx
3
� 2x2 þ xÞ; C2 ¼ 2x3 � 3x2 þ 1; C3 ¼ Leðx

3
� x2Þ; C4 ¼ �2x

3
þ 3x2 (30)
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Fig. 5. Nonlinear bending moment diagram decomposition/approximation.
(iii)
 Assume longitudinal stress resultants for modes 2 and 3 (major and minor axis bending) of the form

W 0
j ¼W 0

0j þW 0
1jxþW 0

2jx
2 (31)

where W 0
lj is the coefficient of the lth order term of the bending moment (stress resultant associated with

j ¼ 2 or 3)—Fig. 5 shows the approximation achieved by means of Eq. (31), which suffices for most
practical applications—recall that Hermite cubic polynomials are adopted to approximate fk(x).
(iv)
 Introduce Eqs. (29)–(31) into (28) and carry out the integrations over Le, to obtain the finite element
linear Ke and geometric Ge stiffness matrices, mass matrix Me and modal generalised displacement
vector de—for members with singly symmetric cross-sections, they read
Ke ¼

K11 0 0 0 0 � � �

K22 0 0 0 � � �

K33 0 0 � � �

K44 0 � � �

K55 � � �

sym: . .
.

2
6666666664

3
7777777775
; Ge

¼

0 0 0 0 0 � � �

G22 0 G24 G25
� � �

G33 G34 G35
� � �

G44 G45
� � �

G55
� � �

sym: . .
.

2
6666666664

3
7777777775

(32)

Me ¼

M11 0 0 0 0 � � �

M22 0 M24 M25 � � �

M33 0 M35 � � �

M44 M45 � � �

M55 � � �

sym: . .
.

2
6666666664

3
7777777775
; de ¼

d1

d2

d3

d4

d5

..

.

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

(33)

where the superscripts of the 4� 4 sub-matrices appearing in Eqs. (32) and (33) identify the deformation
modes included in the analysis. The various sub-matrix components are obtained from (1pp, rp4)

Kik
pr ¼ Cik

Z 1

0

cp;xxcr;xx dxþDik

Z 1

0

cp;xcr;x dxþ Bik

Z 1

0

cpcr dx (34)

Mik
pr ¼ Qik

Z 1

0

cp;xcr;x dxþ Rik

Z 1

0

cpcr dx (35)

Gik
pr ¼W 0

lj Xs
jikTl

pr � Sl
rpX t

jik þ Sl
prX

t
jki

� �h i
(36)

Tl
pr ¼

Z 1

0

xlcp;xcr;x dx; l 2 f0; 1; 2g; Sl
pr ¼

l

Le

Z 1

0

xl�1cp;xcr dx; l 2 f1; 2g (37)

Taking into account the member end support conditions, expressed in terms of the modal degrees of freedom,
one assembles the finite element matrices to obtain the (discretised) eigensystem

ðK�G� o2MÞd ¼ 0 (38)
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where o is the angular frequency of vibration and K, G, M and d denote the global linear and geometrical
stiffness matrices, mass matrix and generalised displacement vector—the components of d are the (unknown)
GBT modal amplitudes and their derivatives.

2.3.1. GBT modal participation factors and diagrams

The solution of Eq. (38) provides the natural angular frequencies (o) and vibration mode shapes, defined by
a vector d that makes it possible to assess the contribution of each deformation mode, by means of the modal

participation factor (Pk) concept. For a given GBT deformation mode k (see Fig. 4), one has

Pk ¼

R
L
jfkðxÞjdxPN

i¼1

R
L
jfiðxÞjdx

(39)

where the numerator and denominator are the sum of the contributions of (i) that deformation mode (k) and
(ii) all the N deformation modes included in the analysis to the member cross-section deformed configurations
associated with the vibration mode under consideration. Although, in general, the Pi values give no
information on the modal amplitude function shapes, the cumulative Pk vs L modal participation diagrams
(e.g., see Figs. 7(b)–(d)) provide quite a good assessment of the variation of the vibration mode nature and
characteristics with the member length. For instance, a member length range with P2+P4E1.0 corresponds to
(major axis) flexural–torsional vibration modes—moreover, the P2 and P4 values indicate how relevant the
mode 2 (flexure) and mode 4 (torsion) participations are in those vibration modes.

3. Illustrative example: simply supported lipped channels

The proposed GBT formulation and finite element implementation is now employed to analyse the
vibration behaviour of statically loaded simply supported lipped channel beams—they are subjected to either
(i) uniform bending (Fig. 6(a)) or (ii) a uniformly distributed transverse load (Fig. 6(b)), with the mid-span
bending moment taken as the load parameter (l�M). The cross-section geometry and nodal discretisation are
the ones displayed earlier, in Fig. 3(b). One begins by analysing the vibration behaviour of the load-free
members. Then, since it is a common practice in the literature to express the static loading as a fraction of its
critical buckling value, the beam buckling behaviour is studied. Finally, one investigates the vibration
behaviour of loaded beams, focusing mainly on the effect of the load magnitude on the fundamental frequency
value and mode shape nature.

3.1. Load-free member vibration

The curves depicted in Fig. 7(a) show the variation of the first three natural frequencies (o1�of, o2 and o3)
of the load-free lipped channel member with the length L (logarithmic scale). For validation purposes, some
fundamental frequency (of) values obtained by means of (i) ANSYS shell finite element analyses and, for
MM

p=8M/L2

M M
BMD

SFD

4M/L

BMD

Fig. 6. Simply supported beams under (a) uniform bending and (b) a uniformly distributed load.
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Fig. 8. Fundamental vibration mode shapes of beams with (a) L ¼ 100 cm and (b) L ¼ 200 cm.
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(minor axis) flexural vibration only, (ii) the analytical expression

of ¼
p
L

� �2 ffiffiffiffiffiffiffiffi
EI3

rA

s
(40)

where A and I3 are the member cross-section area and the minor moment of inertia (e.g., Ref. [25]) are also
included in Fig. 7(a). Moreover, Figs. 7(b)–(d) provide the GBT modal participation diagrams concerning the
member vibration mode shapes (see Section 2.3.1)—note that the fundamental mode always exhibits a single
half-wave, while the second and third ones may exhibit more than one half-wave. For illustration purposes,
Figs. 8(a) and (b) show the fundamental vibration mode shapes of members with L ¼ 100 and 200 cm
(provided by ANSYS analyses). The observation of the vibration results presented in these figures makes it
possible to draw the following conclusions:
(i)
 The three natural frequency values decrease monotonically with L and tend to zero as L goes to infinity.
The o1 and o2 curves are very close for 150pLp500 cm—moreover, they intersect at LE400 cm, a length
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for which the natures of these two vibration modes switch. For L4400 cm, mode 3 becomes clearly
dominant, which explains why the of-L curve virtually coincides with the dashed one, yielded by Eq.
(40)—differences below 0.1%. Moreover, the GBT and ANSYS values agree perfectly, as the differences
never exceed 2.5% (this also applies to o2 and o3, whose ANSYS values are not shown here)—note,
however, that while the SFEA involve 2000–15,000 d.o.f., the GBT analyses require only about 200 (10
beam finite elements, regardless of L)—i.e., a 1%–13% fraction.
(ii)
 As shown by the modal participation diagram presented in Fig. 7(b), the fundamental vibration mode
shape is (ii1) local-plate (mode 7 predominant), for Lo25 cm (very short beams), (ii2) distortional (mode 5
governs, with relevant contributions from modes 3 and 7—see also Fig. 8(a)), for 25oLo120 cm,
(ii3) flexural– torsional– distortional (combines modes 2, 4 and 6—see also Fig. 8(b)), for 120oLo400 cm
and (ii4) purely flexural (mode 3), for L4400 cm.
(iii)
 The GBT modal decompositions of the second and third vibration modes, shown in Figs. 7(b) and (c),
vary more with L, since they involve more deformation modes, some of them exhibiting several half-
waves. For 10oLo1000 cm, the number of participating local-plate modes increases with the vibration
mode order—e.g., while only mode 7 appears in the fundamental mode, the third one involves modes
7–10.
3.2. Beam buckling

The curves shown in Fig. 9(a) provide the variation of the mid-span critical moment Mcr with the beam
length L, for the two loadings depicted in Fig. 6—also included, for validation purposes, are some shell finite
element results concerning the non-uniform bending case, obtained with ANSYS (beams discretised into fine
SHELL63 meshes). The modal participation diagrams displayed in Figs. 9(b) and (c) clarify the contributions
of each GBT deformation mode to the beam buckling modes. After observing the results presented in these
figures, one is led to the following conclusions:
(i)
 The uniform bending Mcr– L curve has a horizontal plateau (McrE3.25 kNm) up to L ¼ 120 cm, followed
by a descending branch. As for the non-uniform bending Mcr–L curve, it exhibits three zones: (i1) an
ascending branch , up to L ¼ 80 cm, (i2) an almost horizontal mid-portion (80oLp130 cm) tending to the
uniform curve (i.e., McrE3.25 kNm) and (i3) a descending branch associated with lateral–torsional
buckling (L4130 cm)—note that the reference moment depends on the beam length (Mcr / pcrL

2), which
explains why it does not decrease monotonically with L (as does the load pcr).
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(ii)
Fig. 1

(a) L
The two Mcr–L curves differ by (ii1) up to 60%, for Lo80 cm, (ii2) less than 4%, for 80oLp120 cm, and
(ii3) 10–15%, for L 4120 cm. Moreover, there is an excellent agreement between the GBT-based results
and the values yielded by the ANSYS analyses (the differences always below 4%).
(iii)
 Fig. 9(b) shows that, for Lo120 cm, the uniformly bent beam critical buckling mode is governed by local-
plate modes 7–9 (fairly equal contributions and up to 25 half-waves)—this explains the closeness of the
two Mcr– L curves for 80oLp120 cm (i.e., the low impact of the applied moment gradients) [26]. For
LX120 cm, modes 3 and 4 (i.e., flexural–torsional buckling) prevail—for the lower lengths, there are also
small contributions from local-plate and distortional modes (e.g., mode 5).
(iv)
 Fig. 9(c) shows that, for 10oLo80 cm, the critical buckling modes of the beams acted upon by a uniform
load basically combine the local-plate modes 7–10, even if non-negligible participations of the distortional
modes 5 and 6 appear for L430 cm and grow steadily up to LE80 cm. Within the range 80oLo130 cm,
modes 7–9 exist and the mode decomposition is very similar to the uniformly bent beam one up to
L ¼ 120 cm (see Fig. 9(b)). For L4130 cm, the modal composition is again very close to the uniformly
bent beam one, with modes 3 and 4 playing a major role.
In order to provide a better grasp of the nature of the non-uniformly bent beam critical buckling modes
(unlike those of the beam under uniform bending, they are not sinusoidal), Figs. 10(a)–(c) show the critical
buckling modes of beams with (i) L ¼ 60 cm (local-plate/distortional buckling—see Fig. 10(a)), (ii) L ¼ 100 cm
(local-plate buckling—see Fig. 10(b)) and (iii) L ¼ 200 cm (lateral–torsional buckling—see Fig. 10(c)). While
the left-hand figures provide 3D representations of the ANSYS buckling modes, the ones on the right provide
the amplitude functions fk(x) of the participating GBT deformation modes. The observation of these critical
buckling mode shape representations prompts the following remarks:
(i)
 The L ¼ 60 cm beam critical buckling mode involves ‘‘diagonal’’ half-waves near the supports, which are
due to the presence of high shear stresses caused by the moment gradients—Fig. 10(a) shows that these
half-waves combine contributions of the GBT local-plate modes 7–10, which only have meaningful
amplitudes in the vicinity (1/4L) of each support—e.g., mode 7 exhibits a clear peak at 1/10L from each
end support. On the other hand, the contributions of the distortional modes 5 and 6 span the whole length
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and ‘‘reinforce’’ each other at the beam upper (compressed) flange-lip—this is why it experiences
downward motions, well perceptible in Fig. 10(a).
(ii)
 Unlike in the previous case, the L ¼ 100 cm beam critical buckling mode involves almost exclusively the
central zone upper half (see Fig. 10(a)), where the deformations are due to high longitudinal compressive

stresses. Fig. 10(b) shows the amplitude functions of the local-plate modes 7–10, which display 9 unequal
half-waves for 1/4ox/Lo3/4 (elsewhere the beams remain practically undeformed) that are not in phase
(f8 and f10 ‘‘oppose’’ f7 and f9) and reach all their peaks at mid-span.
(iii)
 Fig. 10(c) shows that, as expected, the L ¼ 200 cm beam critical mode is flexural–torsional and exhibits an
almost sinusoidal single half-wave—Fig. 10(c) confirms this assertion, as the amplitude functions of
modes 3 and 4, which practically account for all the critical mode shapes, are both very close to single
half-wave sinusoids. However, note the small participations of modes 5 and 6—the latter (the larger one)
is null at mid-span and exhibits symmetrical maxima at 1/4L and 3/4L.
3.3. Beam vibration

Finally, one investigates the vibration behaviour of the lipped channel beams—the applied load value is
defined by a parameter M0 �W 0

2, which is taken as a given fraction (a) of its critical value, i.e., M0
¼ aMcr.

Figs. 11(a) and (b) demonstrate the influence of the applied loading on the beam fundamental frequency—they
show curves (i) oa.u-L, for uniform bending, and (ii) oa.nu-L, for non-uniform bending (uniformly distributed
load). Moreover, the modal participation diagrams presented in Fig. 12 (for both loading cases and five load
levels: a ¼ 0, 0.1, 0.5, 0.95, 0.999) provide in-depth information on the evolution of the beam fundamental
vibration mode shape as the applied load level increases. Finally, Figs. 13(a)–(c) show the variation of the
frequency ratios oa.u/oa ¼ 0, oa.nu/oa ¼ 0 and oa.nu/oa.u with a, for beams with lengths L ¼ 30, 70, 120 and
200 cm—they reveal the load sensitivity of the beam fundamental frequency. After observing the results
presented in these figures, the following conclusions can be drawn:
(i)
 Figs. 11(a) and (b) show that, for both loading cases, the presence of bending moments only causes
noticeable fundamental frequency drops for aX0.25. Within the 0.5oao0.95 applied moment range, the
frequency drop rate increases significantly in both cases. Moreover, for aX0.95 the curves cease to
descend monotonically, as they exhibit more or less pronounced upward branches for some small and
intermediate length ranges—this stems from the increasing number of half-waves displayed by the
corresponding vibration modes.
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(ii)
 In both cases, severe fundamental frequency drops (88% and 86%) occur for 110pLp145 cm—within
this short length range, the vibration mode changes abruptly from local (7–9) with 25 half-waves to
flexural–torsional–distortional (3–6) with a single half-wave, i.e., a much more flexible configuration. In
order to confirm this particular behaviour, the three ANSYS values included in Fig. 11(a) were
calculated—a very good agreement was found, both in terms of the frequency values and the
corresponding vibration mode shapes (not shown).
(iii)
 The comparison between the modal participation diagrams shown in Figs. 12(a)–(c) and 12(b)–(d) shows
that, unlike the of value, the fundamental vibration mode shape may be considerably altered by the
presence of even quite small applied moments (a ¼ 0.1)—in fact, either the distortional mode 6 joins
modes 5 and 7 (intermediate beams) or the global mode 3 join modes 2 and 4 (longer beams—they are
totally separated for a ¼ 0). Within the 0.1oao0.95 range (see Figs. 12(e) and (f)), modes 8–10
progressively replace mode 7 (short beams), the contributions of modes 5 and 6 become closer
(intermediate beams) and the relevance of mode 2 gradually fades (longer beams). Finally, for aX0.95
the vibration mode shapes change quite drastically, approaching their corresponding critical buckling
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mode counterparts (see Figs. 12(g)–(j))—for a ¼ 0.999, the beam fundamental vibration and critical
buckling modes virtually coincide throughout the whole length range, as shown by Figs. 12(i) and (j) and
9(b) and (c)).
(iv)
 Figs. 13(a) and (b) show that the variation of the fundamental frequency drop with a clearly depends on
L—although all the oa=oa¼0 � a curves have unit values and null derivatives at a ¼ 0, the ones associated
with higher lengths exhibit lower oa=oa¼0 values within the range 0oao0.8–0.95, which means that the
load sensitivity of the fundamental frequency increases with the length. As the loadings approach their
critical levels (a-1), the ratio oa=oa¼0 drops to zero—however, the curves associated with intermediate
lengths (L ¼ 70 and 120 cm) exhibit higher values.
(v)
 From Fig. 13(c) one can assess the effect of the moment gradients on the load sensitivity of the beam
fundamental frequencies, quantified by the ratio oa.nu/oa.u. Looking at the plot oa:nu=oa:u � a, one realises
that this effect is negligible for ao0.75 (oa.nu/oa.uE1) and for the two longer beams (L ¼ 120 and
200 cm), regardless of a. For the higher load levels, L ¼ 30 and 70 cm curves exhibit drops going up to
about 0.5, which shows that the moment gradients may lead to significantly more flexible vibration
modes—this stems from the qualitative differences between the buckling modes of the two pairs of shorter
beams (see Figs. 9(b) and (c)).
(vi)
 Finally, one last word about the difference between the vibration behaviours of the uniformly bent beams
and compressed columns (the latter studied in Ref. [20]). For small load levels (ao0.25), while the
columns experience noticeable (although small) frequency drops and no vibration mode shape change, the
beams have marginal frequency drops and quite substantial vibration mode shape changes. For higher
load levels, however, both the column and the beam vibration mode shapes tend to their buckling mode
counterparts—while the column changes concern only the number of half-waves, the beam ones are much
more dramatic.
4. Illustrative example: plain channel cantilevers

One now analyses the vibration behaviour of statically loaded plain channel (U-section) cantilevers loaded
as shown in Fig. 14(a)—they are subjected to two tip transverse and axial (compressive) point loads, which
give the linear bending moment and uniform shear/axial force diagrams, depicted in Figs. 14(b) and (c). The
magnitudes of the two loads are Qz ¼ 0.2l and P ¼ l, where l is the (single) load parameter. The cross-section
geometry and discretisation are those already shown in Fig. 3(a). In the next sub-sections, one addresses
the cantilever load-free vibration, buckling and loaded vibration behaviours—the load-free vibration
analysis includes a detailed comparison with the experimental and numerical (SFEA) results reported by
Klausbruckner and Pryputniewicz [4].
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Fig. 15. Cantilever I: end section-deformed configuration for the first five vibration modes.
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Fig. 16. Cantilever II: end section-deformed configuration for the first five vibration modes.
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4.1. Load-free vibration—comparison with experimental results

Three cantilevers with material properties E ¼ 190GPa, n ¼ 0.3 and r ¼ 7.93� 10�3 gmm�3, and almost
identical geometries (L ¼ 29.5 cm, bw ¼ 2.7 cm and h ¼ 4.5 cm—they only differ in the flange width bf)
are analysed. They are hereafter designated as Cantilever I (bf ¼ 0.6 cm), Cantilever II (bf ¼ 1.3 cm)
and Cantilever III (bf ¼ 3.2 cm), and were experimentally and numerically studied by Klausbruckner
and Pryputniewicz [4]. These authors chose these rather small length and cross-section dimensions because
of the methodology employed to perform the tests: laser hologram interferometry—the ‘‘small cantilevers’’
are excited acoustically and displacement amplitudes at several points located on their walls are memorised
by the holographic equipment, through optical wavefronts, making it possible to obtain a set of holo-
grams providing information about the vibration mode shapes and the corresponding natural frequency
values.

The GBT analyses adopted cantilever longitudinal discretisations into 10 beam finite elements and the
results presented in Tables 1–3 (Cantilevers I, II and III) consist of estimates of the 10 first natural frequencies
(in Hz), obtained (i) experimentally (oEXP) and numerically (oFEM) by Klausbruckner and Pryputniewicz and
(ii) by means of GBT analyses (oGBT and modal participation diagrams of some vibration modes)—they also
include the values of the natural frequency ratios eEXP ¼ oEXP/oGBT and eFEM ¼ oFEM/oGBT. These results
are also depicted graphically: while Figs. 18–20 provide the modal amplitude functions fk(x) associated with
the first five vibration modes of Cantilevers I–III, Figs. 15–17 show the deformed configurations of the
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Fig. 17. Cantilever III: end section-deformed configuration for the first five vibration modes.

Table 1

Experimental and numerical results concerning the vibration behaviour of Cantilever I

Vibr. mode Klausbruckner GBT Modal participation (%) Configuration

oEXP oFEM oGBT eEXP eFEM 2 3 4 5 6 7 8 9 Mode ns

1 55.1 57.9 53.2 1.04 1.09 0 99.7 0 0.3 0 0 0 0 F 1

2 102.1 102.9 101.8 1.00 1.01 3.1 0 96.9 0 0 0 0 0 T 1

3 314.7 321.8 322.4 0.98 1.00 77.2 0 22.3 0 0.5 0 0 0 FT 1

4 337.7 354.8 329.5 1.02 1.08 0 94.3 0 5.5 0 0.2 0 0 F 2

5 446.8 453.9 437.5 1.02 1.04 4.1 0 95.0 0 0.7 0 0.2 0 T 2

6 861.9 887.6 847 1.02 1.05 0 64.7 0 34.1 0 1.2 0 0 FLP 3

7 1113.9 1147.9 1101.8 1.01 1.04 1.1 0 94.5 0 3.2 0 1.2 0 T 3

8 1335.9 1320.4 1304.7 1.02 1.01 0 29.0 0 68.6 0 2.3 0 0.1 FLP 4

9 1624.3 1576.0 1582.4 1.03 1.00 0 13.4 0 83.0 0 3.5 0 0.1 FLP 5

10 1842.8 1782.0 1827.6 1.01 0.98 0 7.6 0 87.3 0 4.9 0 0.2 FLP 6

Table 2

Experimental and numerical results concerning the vibration behaviour of Cantilever II

Vibr. mode Klausbruckner GBT Modal participation (%) Configuration

oEXP oFEM oGBT eEXP eFEM 2 3 4 5 6 7 8 9 Mode ns

1 117.3 119.0 119.6 0.98 0.99 9.6 0 88.7 0 1.7 0 0 0 T 1

2 – 131.9 131.3 – 1.00 0 98.0 0 2.0 0 0 0 0 F 1

3 409.2 413.8 422.7 0.97 0.98 66.0 0 29.5 0 4.5 0 0 0 FT 1

4 628.9 638.5 648.1 0.97 0.99 6.0 0 64.0 0 30.0 0 0 0 TLP 2

5 730.6 725.6 733.7 1.00 0.99 0 37.1 0 60.4 0 2.5 0 0 FLP 2

6 941.7 889.5 896.4 1.05 0.99 0 14.4 0 84.1 0 1.5 0 0 FLP 1

7 975.7 930.9 939.1 1.04 0.99 0 9.1 0 89.8 0 1.0 0 0 FLPa 3

8 1071.9 1027.3 1041.6 1.03 0.99 0 25.0 0 71.4 0 3.5 0 0.1 FLPa 3

9 1101.5 1058.6 1074.9 1.02 0.98 0 9.6 0 89.0 0 1.4 0 0 FLP 4

10 1242.6 1194.7 1219.6 1.02 0.98 0 3.2 0 95.9 0 0.8 0 0.1 LP 5

aAlthough the seventh and eight vibration modes exhibit very similar characteristics, they differ in the signs of the modal amplitude

functions f3 and f5, which are the same in the first case and opposite in the second one.
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corresponding free end sections. On the basis of the comparison between the three sets of vibration results, one
draws the following conclusions:
(i)
 The eEXP values have an average and standard deviation equal to 1.01 and 0.02 (Cantilever I) 1.01
and 0.03 (Cantilever II), and 1.00 and 0.02 (Cantilever III). Moreover, the differences never exceed 5%
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Table 3

Experimental and numerical results concerning the vibration behaviour of Cantilever III

Vibr. mode Klausbruckner GBT Modal participation (%) Configuration

oEXP oFEM oGBT eEXP eFEM 2 3 4 5 6 7 8 9 Mode ns

1 117.5 119.5 119.9 0.98 1.00 12.5 0 39.6 0 47.9 0 0 0 FTLP 1

2 231.1 222.2 224.7 1.03 0.99 0 1.7 0 98.3 0 0 0 0 LP 1

3 259.5 252.0 255.0 1.02 0.99 0 0.6 0 99.4 0 0 0 0 LP 2

4 311.6 300.3 306.1 1.02 0.98 0.8 0 1.7 0 97.5 0 0 0 ALP 2

5 312.0 307.8 312.3 1.00 0.99 0 0.3 0 99.5 0 0.2 0 0 LP 3

6 329.7 331.0 334.2 0.99 0.99 0 79.6 0 17.8 0 2.6 0 0 FLP 1

7 – 360.4 368.2 – 0.98 0.3 0 0.5 0 99.0 0 0.2 0 ALP 3

8 391.4 386.5 394.8 0.99 0.98 0 0 0 99.5 0 0.3 0 0.2 LP 4

9 445.9 433.1 445.4 1.00 0.97 1.0 0 0.6 0 98.1 0 0.3 0 ALP 4

10 490.7 486.7 501.2 0.98 0.97 0 0 0 99.3 0 0.5 0 0.2 LP 5
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and are higher than 3.0% only in 5 cases (out of 28). As for the eFEM values, they have an average and
standard deviation equal to 1.03 and 0.04 (Cantilever I), 0.99 and 0.01 (Cantilever II) and 0.98 and 0.01
(Cantilever III)—with just two exceptions, the differences are always below 5% and larger than 3.0%
only in three of the remaining 28 cases.
(ii)
 The two exceptions mentioned in the previous item (differences of 9% and 8%) concern the first and
fourth vibration modes of Cantilever I (‘‘narrow’’ flanges)—in both cases, one has minor axis flexural
vibration modes exhibiting either one (first mode) or two (fourth mode) half-waves (see Figs. 15 and 18).
Since no plausible explanation was found for this discrepancy, it was decided to perform a FEM
vibration analysis in ABAQUS, adopting S4 shell element discretisations similar to the ones of
Klausbruckner and Pryputniewicz [4]—the values obtained (of ¼ 53.1Hz and o4 ¼ 329.2Hz) virtually
coincide with those yielded by the GBT analyses. On the other hand, the application of classical beam
vibration theory (e.g., Ref. [25]) leads to the analytical expressions:

ons¼1 ¼
1:8751

L

	 
2
ffiffiffiffiffiffiffiffi
EI3

rA

s
ons¼2 ¼

4:6941

L

	 
2
ffiffiffiffiffiffiffiffi
EI3

rA

s
(41)

for the natural frequencies corresponding to minor axis flexural vibration modes with one and two half-
waves (I3 is the minor axis moment of inertia)—for the cases under consideration, Eq. (41) yield of ¼

ons
¼ 1 ¼ 53:2Hz and o4 ¼ ons¼2 ¼ 333:2Hz, values that are very close to both the ABAQUS and GBT-

based ones (in the second case, the GBT-based estimate is slightly lower than the values yielded by Eq.
(41b), due to a very small participation of the local-plate deformation mode 5). Thus, one may conclude
that the two FEM estimates reported by Klausbruckner and Pryputniewicz are not very accurate—even
if no logical explanation was found for this fact.
(iii)
 There are two natural frequencies (second of Cantilever II and seventh of Cantilever III) that correspond
to minor axis flexural vibration modes not obtained experimentally. However, the FEM and GBT-based
values compare very well in both cases—eFEM ¼ 1.00 and eFEM ¼ 0.98.
(iv)
 As the flange width increases (Cantilever I-Cantilever III), the oGBT values tend to overestimate oEXP

and oFEM slightly further. In order to retain the accuracy of the GBT-based estimates, it would be
necessary to include more intermediate nodes in the flanges (finer cross-section discretisation).
(v)
 Even in the case of the higher-order natural frequencies, the GBT-based estimates are rather accurate—
note that the eEXP and eFEM values are always of the same order of magnitude.
(vi)
 In all three cantilevers, the local-plate deformation modes (5–9) become more relevant as both bf and the
vibration mode order increase—indeed, the contributions of these deformation modes are more relevant
for vibration modes of order equal to or higher than six (Cantilever I—bf ¼ 6mm), four (Cantilever II—
bf ¼ 13mm) and one (Cantilever III—bf ¼ 27mm).
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(vii)
 The accuracy of the results provided by the classical beam vibration theories depends on the member
geometry (cross-section dimensions) and order of the vibration mode—indeed, none of the natural
frequencies yielded by GBT vibration analyses of Cantilever III that include only the rigid-body modes
(2–4) is accurate.
(viii)
 The relevance of torsion mode 4 decreases with bf—indeed, it participates in 4 (Cantilever I), 3
(Cantilever II) and 1 (Cantilever III) of the first ten vibration modes. This is because a bf increase fosters
a warping stiffness rise much larger than its in-plane deformation counterpart.
(ix)
 In Cantilever III, the local-plate deformation modes (5–9) are dominant, as the rigid-body modes (2–4)
only contribute to the first and sixth vibration modes. Note also the existence of a local-plate
vibration mode with an anti-symmetric cross-section configuration (fourth mode—see Fig. 17), a feature
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that never occurs in Cantilevers I and II. Using finite strip analysis, Cheung and Cheung [27]
showed that, in members with several walls, such modes may be associated with lower-order natural
frequencies.
(x)
 No conclusion could be obtained concerning the number of half-waves exhibited by a given vibration
mode—i.e., how the flange width and/or the vibration mode order influence it.
4.2. Load-free vibration—variation with the length

Figs. 21(a) and (b) concern cantilevers with type II cross-section and display (i) o– L curves concerning the
first five vibration modes and (i) the GBT modal participation diagram of the fundamental one—also included
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in Fig. 21(a) are a few fundamental frequency values determined by means of ANSYS SFEA. The observation
of all these vibration results leads to the following comments:
(i)
 The five o–L curves decrease monotonically with L and exhibit several distinct branches. For o1

(fundamental frequency), one has (i1) an initial nonlinear branch, for Lp10 cm, (i2) an intermediate
linear branch, for 10oLo40 cm and (i3) a last branch, still linear but slightly steeper, for L440 cm.
Note that there is a virtually perfect match between the ANSYS and GBT-based o1 values, even
if the GBT analyses involve between 2% and 20% of number of degrees of freedom required by the
SFEA.
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(ii)
3Si

mino

assoc
The four remaining curves (o2– L to o5–L) follow the same qualitative trend as their fundamental
counterpart. Note, however, that the initial nonlinear branch becomes more ‘‘complex’’ as the vibration
mode order increases.
(iii)
 The modal participation diagram shows that the cantilever fundamental vibration modes either (iii1)
are governed by the local-plate mode 5, with small contributions of the other local-plate modes (45) or
mode 3 (Lo10 cm), (iii2) combine modes 2, 4 and 6 (10oLo40 cm—flexural–torsional–distortional

vibration) or (iii3) involve only mode 3 (L440 cm). Like in the lipped channel beams (see Fig. 7(b)), (iii1)
the participation diagram exhibits two ‘‘abrupt’’ transitions (L ¼ 10 and 40 cm) and (iii2) the odd- and
even-numbered GBT deformation modes never mix in a vibration mode (singly symmetric section).
4.3. Cantilever buckling

The buckling behaviour of cantilevers acted upon by the single-parameter loading shown in Fig. 14(a),
combining tip transverse (0.2l) and axial loads (l), is now investigated. Figs. 22(a) and (b) provide the lcr– L

curve and the modal participation diagram of the critical buckling mode—as before, some ANSYS shell finite
element results are also included for the sake of validation. After observing these buckling results, one readily
concludes that:
(i)
 The lcr–L curve descends monotonically and has three distinct branches: (i1) a nonlinear branch with a
decreasing slope, for Lp7 cm, (i2) a first linear branch with a moderate slope, for 7o Lo 45 cm and (i3) a
second linear branch (steeper than the previous one), for L445 cm—note the qualitative similarity
between curves lcr–L and o1–L. Moreover, there is again a virtual coincidence between the ANSYS and
GBT-based critical buckling load values.
(ii)
 For Lo45 cm, the cantilever critical buckling modes combine dominant local-plate modes 5 and 6 (with
participations varying with L), together with a small contribution of higher-order local-plate modes (4 6)
and global modes 3 and 4 (only for 7oLo45 cm). On the other hand, the longer cantilevers (L445 cm)
buckle in a combination of modes 3 and 4 (lateral–torsional buckling—the participation of mode 3 grows
significantly with L), in a few cases with a tiny bit of mode 2.3 Note that the buckling occurs in either single
half-wave modes (Lo7 cm or L445 cm) or modes with 2–9 half-waves (7oLo45 cm), although this
information is not available in Fig. 22(b).
nce this is a ‘‘beam-column type’’ cantilever, its global buckling behaviour combines (i) flexural–torsional buckling (modes 2 and 4) or

r axis flexural buckling (mode 3), both associated with the column behaviour with (ii) lateral–torsional buckling (modes 3 and 4),

iated with the beam behaviour.
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4.4. Cantilever vibration

Finally, one investigates the loaded cantilever vibration behaviour, where the applied loading is defined by a
fraction of its critical value (l ¼ alcr). While Fig. 23(a) shows the variation of the cantilever beam-column
fundamental frequency o1 with a (9 different values are dealt with), Figs. 23(b)–(d) display the modal
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participation diagrams of the fundamental vibration mode for a ¼ 0.1, 0.75 and 0.95. As for Fig. 24, it
provides the variation of the ratio oa/oa ¼ 0 with a for beams with lengths L ¼ 3,4 15, 30 and 100 cm. The
observation of these vibration results prompts the following remarks:
(i)
4Th
For aX0.5, the loading causes noticeable fundamental frequency drops for Lp10–30 cm and
LX40–55 cm (the limits vary with a)—this drop is almost imperceptible for 10–30pLp40–55 cm.
(ii)
 For aX0.9, the o1–L curves no longer descend monotonically in the small length range (Lp10–30 cm),
whereas they remain fairly linear and parallel (below) to the load-free vibration one for LX40–55 cm.
The o1 drops become quite drastic as one approaches the critical loading (aX0.95).
(iii)
 The comparison between Figs. 23(b) (a ¼ 0.1) and 21(b) (a ¼ 0) shows that, unlike the o1 value, the
vibration mode shape may be considerably altered by the presence of even a small loading (10% of the
critical one)—e.g., since the bending moments couple the GBT deformation modes, the participation
diagram transitions occurring for L ¼ 10 and 40 cm cease to be ‘‘abrupt’’. Moreover, this small loading
affects mostly the fundamental vibration mode shapes of cantilevers with intermediate lengths
(10oLo100 cm), as they now combine all the modes 2–6 in varying proportions—the shorter
(Lo10 cm) and longer (LX100 cm) cantilevers continue to vibrate in ‘‘almost pure’’ local-plate and
‘‘pure’’ flexural modes, due to the minute bending moments and low stiffness, respectively.
(iv)
 Figs. 23(c) and (d) show that the fundamental vibration mode participation diagram tends to the critical
buckling mode one (see Fig. 22(b)) as a increases—e.g., note the growing relevance of modes 5 and higher
(X6), as well as, for large lengths, the evolution of the contributions of modes 3 and 4 towards the
combination that characterises the cantilever flexural–torsional critical buckling mode.
(v)
 Finally, Fig. 24 shows that, generally speaking, the o1 load sensitivity increases with the cantilever length
(as for the lipped channel beams—see Figs. 13(a) and (b))—indeed, except for a values very close to 1.0,
the L ¼ 15, 30 and 100 cm curves are associated with progressively larger o1 drops.
(vi)
 However, the fundamental frequency of very short cantilevers (e.g., L ¼ 3 cm) exhibits a significant load
sensitivity—due to their small lengths, compression highly prevails over bending and, thus, the cantilever
behaves like a column, which experiences noticeable frequency drops for low a values.
(vii)
 The various oa/oa ¼ 0 vs. a curves have clearly non-null derivatives for a ¼ 0, which is due to the presence
of a significant compressive axial force.
5. Conclusion

This work dealt with the development and illustration of a GBT beam finite element formulation for the
local and global vibration analysis of open-section thin-walled members subjected to compression and
uniform or non-uniform bending (recall that the latter is always associated with shear forces). First, the GBT
is extremely short (unrealistic) cantilever length was considered in order to capture a specific kind of vibration behaviour.
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fundamentals were briefly described, together with the main steps and procedures involved in the formulation
and numerical implementation of the aforementioned finite element. Then, the proposed approach was
employed to investigate the local and global vibration behaviour of (i) simply supported lipped channel beams
under uniform and non-uniform bending (the latter due to uniformly distributed transverse loads) and (ii)
plain channel cantilevers acted upon by axial and transverse tip loads—the study focused on the influence of
the applied loading level on the vibration frequencies and mode shapes.

It was concluded that the effect of the presence of applied bending moments on the member fundamental
vibration frequency increases with length—moreover, even small applied moments can cause noticeable
qualitative vibration mode shape changes, a feature not shared by columns. Additionally, it was also found
that the moment gradients, and ensuing shear forces/stresses, may lead to natural frequencies much lower than
those associated with uniform bending, namely in short beams under high applied loading levels. Finally, the
unique modal characteristics of GBT (i) made it possible to perform accurate vibration analyses involving only
a fairly low degree of freedom numbers (between 1% and 20% of those required by similarly accurate identical
SFEA) and (ii) enabled vibration mode representations through structurally meaningful modal participation
diagrams. For validation purposes, some of the GBT-based results were compared with others, either obtained
experimentally (cantilevers only) or obtained by SFEA carried out in the codes ANSYS or ABAQUS—an
excellent agreement was found in practically all cases.
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